ON ALMOST STRONGLY *θ-b*-CONTINUOUS FUNCTIONS

HAKEEM A. OTHMAN* AND ALI TAANI**

ABSTRACT. We introduce a new class of functions called almost strongly θ -b-continuous function which is a generalization of strongly θ -continuous functions and strongly θ -b-continuous functions. Some characterizations and several properties concerning almost strongly θ -b-continuous function are obtained.

1. INTRODUCTION

A subset A of a topological space X is bopen [2] or sp-open [7] if $A \subseteq Int(Cl(A)) \cup$ Cl(Int(A)). A function $f: X \to Y$ is called b-continuous [8] if for each $x \in X$ and each open set V of Y containing f(x), there exists a b-open U containing x such that $f(U) \subseteq V$, which is equivalent to say that the preimage $f^{-1}(V)$ of each open set V of Y is b-open in X. Recently, Park [16] introduced and investigated the notion of strongly θ -b-continuous functions which is stronger than *b*-continuous, moreover see [3, 4, 5]. The purpose of the present paper is to introduce and investigate a weaker form of strongly θ -b-continuity called almost strongly θ -b-continuous function.

For the benefit of the reader we recall some basic definitions and known results. Throughout the present paper, the space Xand Y (or (X, τ) and (Y, σ)) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let A be a subset of X. The closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. The complement of an *b*-open set is called *b*-closed. The smallest *b*-closed set containing $A \subseteq X$ is called the *b*-closure, of A and shall be denoted by bCl(A). The union of all *b*-open set of X contained in A is called the *b*-interior of A and is denoted by bInt(A). A subset A is said to be b-regular if it is bopen and b-closed. The family of all *b*-open (resp; *b*-closed, b-regular, open) subsets of a space X is denoted by BO(X) (resp; BC(X), BR(X), O(X) respectively) and the collection of all *b*-open subsets of X containing a fixed point x is denoted by BO(X, x). The sets O(X, x) and BR(X, x) are defined analogously.

A point $x \in X$ is called a θ -cluster point of A if $Cl(U) \cap A \neq \phi$ for every open set U of X containing x. The set of all θ -cluster points of A is called the θ -closure [18] of A and is denoted by $Cl_{\theta}(A)$. A subset A is said to be θ -closed [18] if $Cl_{\theta}(A) = A$. The complement of a θ -closed set is said to be θ -open.

A point x of X is called a b- θ -cluster [16] point of A if $bCl(U) \cap A \neq \phi$ for every $U \in BO(X, x)$. The set of all b- θ -cluster points of A is called b- θ -closure of A and is denoted by $bCl_{\theta}(A)$. A subset A is said to be

²⁰⁰⁰ Mathematics Subject Classification. 54C05, 54C08, 54C10.

Key words and phrases. b-open sets, b- θ -closed sets, Almost strongly θ -b-continuous functions, b- θ -closed graphs.

b- θ -closed if $A = bCl_{\theta}(A)$. The complement of a b- θ -closed set is said to be b- θ -open set.

A subset A of X is called regular open (regular closed) if A = Int(Cl(A)) (A = Cl(Int(A))). The δ -interior of a subset A of X is the union of all regular open sets of X contained in A and it is denoted by δ -Int(A) [18]. A subset A is called δ -open if $A = \delta$ -Int(A). The complement of a δ open set is called δ -closed. The δ -closure of a set A in a space (X, τ) is defined by $\{x \in X : A \cap Int(Cl(B)) \neq \phi, B \in \tau \text{ and} x \in B\}$ and it is denoted by δ -Cl(A).

2. CHARACTERIZATIONS

Definition 2.1. A function $f : X \to Y$ is said to be almost strongly θ -b-continuous if for each $x \in X$ and each open set V of Ycontaining f(x), there exists $U \in BO(X, x)$ such that $f(bCl(U)) \subseteq Int(Cl(V))$.

Definition 2.2. [16] A function $f: X \to Y$ is said to be strongly θ -b-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in BO(X, x)$ such that $f(bCl(U)) \subseteq V$.

Then it is clear that every strongly θ -bcontinuous is almost strongly θ -b-continuous but the converse is not true.

Definition 2.3. [14] A function $f: X \to Y$ is said to be strongly θ -continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists an open set U of X containing x such that $f(Cl(U)) \subseteq V$.

Example 2.4. Let $X = \{a, b, c\}$, $(X, \tau) = \{X, \phi, \{a\}, \{a, b\}\}$ with $BO(X, \tau) =$ $\{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $(X, \sigma) =$ $\{X, \phi, \{a\}\}$. And $f : (X, \tau) \to (X, \sigma)$ be defined by f(a) = b, f(b) = c and f(c) = a. Then f is almost strongly θ -b-continuous but it is not strongly θ -b-continuous. Since the open set $V = \{a\}$ in (X, σ) containing f(c)and there is no b-open set U in (X, τ) containing c such that $f(bCl(U)) \subseteq V$.

Theorem 2.5. For a function $f : X \to Y$, the following are equivalent:

- (1) f is almost strongly θ -b-continuous;
- (2) $f^{-1}(V)$ is b- θ -open in X for each regular open set V of Y;
- (3) $f^{-1}(F)$ is b- θ -closed in X for each regular closed set F of Y;
- (4) for each $x \in X$ and each regular open set V of Y containing f(x), there exists $U \in BO(X, x)$ such that $f(bCl(U)) \subseteq V;$
- (5) $f^{-1}(V)$ is b- θ -open in X for each δ open set V of Y;
- (6) f⁻¹(F) is b-θ-closed in X for each δclosed set F of Y;
- (7) $f(bCl_{\theta}(A)) \subseteq Cl_{\delta}(f(A))$ for each subset A of X;
- (8) $bCl_{\theta}(f^{-1}(B)) \subseteq f^{-1}(Cl_{\delta}(B))$ for each subset B of Y.

Proof. (1) → (2): Let V be any regular open set of Y and $x \in f^{-1}(V)$. Then V = int(clV)and $f(x) \in V$. Since f is almost strongly θ -bcontinuous, there exists $U \in BO(X, x)$ such that $f(bCl(U)) \subseteq V$. Therefore, we have $x \in U \subseteq bCl(U) \subseteq f^{-1}(V)$. This shows that $f^{-1}(V)$ is b- θ -open in X.

(2) \rightarrow (3): Let F be any regular closed set of Y. By (2), $f^{-1}(F) = X - f^{-1}(Y - F)$ is b- θ -closed in X.

 $(3) \to (4)$: Let $x \in X$ and V be any regular open set of Y containing f(x). By (3), $f^{-1}(Y - V) = X - f^{-1}(V)$ is b- θ -closed in X and so $f^{-1}(V)$ is a b- θ -open set containing x, there exists $U \in BO(X, x)$ such that $bCl(U) \subseteq f^{-1}(V)$. Therefore, we have $f(bCl(U)) \subseteq V$.

(4) \rightarrow (5): Let V be any δ -open set of Y

http://www.ijser.org

and $x \in f^{-1}(V)$. There exists a regular open set G of Y such that $f(x) \in G \subseteq V$. By (4), there exists $U \in BO(X, x)$ such that $f(bCl(U)) \subseteq G$. Therefore, we obtain $x \in U \subseteq bCl(U) \subseteq f^{-1}(V)$. This shows that $f^{-1}(V)$ is b- θ -open in X.

 $(5) \rightarrow (6)$: Let F be any δ -closed set of Y. Then Y - F is b- θ -open in Y and by (5), $f^{-1}(F) = X - f^{-1}(Y - F)$ is b- θ -closed in X.

(6) \rightarrow (7): Let A be any subset of X. Since $Cl_{\delta}(f(A))$ is δ -closed in Y, by (6) $f^{-1}(Cl_{\delta}(f(A)))$ is b- θ -closed in X. Let $x \notin f^{-1}(Cl_{\delta}(f(A)))$. There exists $U \in BO(X, x)$ such that $bCl(U) \cap f^{-1}(Cl_{\delta}(f(A))) = \phi$ and thus $bCl(U) \cap A = \phi$. Hence $x \notin bCl_{\theta}(A)$. Therefore, we have $f(bCl_{\theta}(A)) \subseteq Cl_{\delta}(f(A))$. (7) \rightarrow (8): Let B be any subset of Y. By (7), we have $f(bCl_{\theta}(f^{-1}(B))) \subseteq Cl_{\delta}(B)$ and hence $bCl_{\theta}(f^{-1}(B)) \subseteq f^{-1}(Cl_{\delta}(B))$.

(8) \rightarrow (1): let $x \in X$ and V be any open set of Y containing f(x). Then G =Y - Int(Cl(V)) is regular closed and hence δ -closed in Y. By (8), $bCl_{\theta}(f^{-1}(G)) \subseteq$ $f^{-1}(Cl_{\delta}(G)) = f^{-1}(G)$ and hence $f^{-1}(G)$ is b- θ -closed in X. Therefore, $f^{-1}(Int(Cl(V)))$ is b- θ -open set containing x. There exists $U \in BO(X, x)$ such that $bCl(U) \subseteq$ $f^{-1}(Int(Cl(V)))$. Therefore we obtain $f(bCl(U)) \subseteq Int(Cl(V))$. This shows that f is almost strongly θ -b-continuous. \Box

Definition 2.6. A subset A of a space X is said to be:

- (1) α -open [12] if $A \subseteq Int(Cl(Int(A)));$
- (2) semi-open [9] if $A \subseteq Cl(Int(A))$;
- (3) preopen [11] if $A \subseteq Int(Cl(A))$;
- (4) β -open [2] if $A \subseteq Cl(Int(Cl(A)))$.

Theorem 2.7. For a function $f : X \to Y$, the following are equivalent:

(1) f is almost strongly θ -b-continuous;

- (2) $bCl_{\theta}(f^{-1}(V) \subseteq f^{-1}(Cl(V))$ for each β -open set V of Y;
- (3) $bCl_{\theta}(f^{-1}(V) \subseteq f^{-1}(Cl(V))$ for each b-open set V of Y;
- (4) $bCl_{\theta}(f^{-1}(V) \subseteq f^{-1}(Cl(V))$ for each semi-open set V of Y.

Proof. (1) \rightarrow (2): Let V be any β -open set of Y. Then by Theorem 2.4 in [1] Cl(V) is regular closed in Y. Since f is almost strongly θ -b-continuous, $f^{-1}(Cl(V))$ is b- θ -closed in X and hence $bCl_{\theta}(f^{-1}(V) \subseteq f^{-1}(Cl(V))$.

(2) \rightarrow (3): This is obvious since every *b*-open set is β -open.

(3) \rightarrow (4): This is obvious since every semiopen set is *b*-open.

(4) \rightarrow (1): Let F be any regular closed set of Y. Then F is semi-open in Y and by(4) $bCl_{\theta}(f^{-1}(F) \subseteq f^{-1}(Cl(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is b- θ -closed in X. Therefore f is almost strongly θ -b-continuous. \Box

Recall that a space X is said to be almost regular [15](resp; semi-regular) if for any regular open (resp; open) set U of X and each point $x \in U$, there exist a regular open set V of X such that $x \in V \subseteq Cl(V) \subseteq U$ (resp; $x \in V \subseteq U$).

Theorem 2.8. For any function $f : X \to Y$, the following properties hold:

- If f is b-continuous and Y is almost regular, then f is almost strongly θ-bcontinuous;
- (2) If f is almost strongly θ-b-continuous and Y is semi-regular, then f is strongly θ-b-continuous;

Proof. (1) Let $x \in X$ and V be any regular open set of Y containing f(x). Since Y is almost regular, there exists an open set W such that $f(x) \in W \subseteq Cl(W) \subseteq V$. Since f is b-continuous, there exists $U \in BO(X, x)$ such that $f(U) \subseteq W$. We shall

show that $f(bCl(U)) \subseteq Cl(W)$. Suppose that $y \notin Cl(W)$. There exists an open neighborhood G of y such that $G \cap W = \phi$. Since f is b-continuous, $f^{-1}(G) \in BO(X)$ and $f^{-1}(G) \cap U = \phi$ and hence $f^{-1}(G) \cap bCl(U) = \phi$ ϕ . Therefore, we obtain $G \cap f(bCl(U)) = \phi$ and $y \notin f(bCl(U))$. Consequently. we have $f(bCl(U)) \subseteq Cl(W) \subseteq V$.

(2) Let $x \in X$ and V be any open set of Y containing f(x). Since Y is semi-regular, there exists a regular open set W such that $f(x) \in W \subseteq V$. Since f is almost strongly θ b-continuous, there exists $U \in BO(X, x)$ such that $f(bCl(U) \subseteq W$. Therefore, we have $f(bCl(U) \subseteq V$.

Definition 2.9. A topological space X is said to be b^* -regular (resp; b-regular [16], almost b-regular) if for each $F \in BC(X)$ (resp; $F \in C(X), F$ regular closed) and each $x \notin F$, there exist disjoint b-open sets U and V such that $x \in U$ and $F \subseteq V$.

Lemma 2.10. For a topological space X, the following are equivalent:

- (1) X is b^* -regular (resp; b-regular [16]);
- (2) For each $U \in BO(X, x)$ (resp; $U \in O(X, x)$), there exists $V \in BO(X, x)$ such that $x \in V \subseteq bCl(V) \subseteq U$.

It is Known that a function $f : X \to Y$ is almost continuous if for each $x \in X$ and each open set V of Y containing f(x), there is a neighborhood U of x such that $f(U) \subseteq$ Int(Cl(V)). Long and Herrington [10] proved that $f : X \to Y$ is almost continuous if and only if the inverse image of every regular open set in Y is open in X.

Theorem 2.11. (1) If a continuous function $f: X \to Y$ is almost strongly θ -b-continuous then X is almost b-regular.

(2) If $f : X \to Y$ is almost continuous and

X is b-regular then f is almost strongly θ -b-continuous.

395

Proof. (1) Let $f : X \to Y$ be the identity. Then f is continuous and hence almost strongly θ -*b*-continuous. For any regular open set U of X and any points $x \in U$, we have $f(x) = x \in U$ and there exists $G \in BO(X, x)$ such that $f(bCl(G)) \subseteq U$. Therefore, we have $x \in G \subseteq bCl(G) \subseteq U$ and hence X is almost *b*-regular.

(2) Suppose that $f : X \to Y$ is almost continuous and X is b-regular. For each $x \in X$ and any regular open set V containing f(x), $f^{-1}(V)$ is an open set of X containing x. Since X is b-regular there exists $U \in BO(X, x)$ such that $x \in U \subseteq bCl(U) \subseteq$ $f^{-1}(V)$. Therefore, we have $f(bCl(U)) \subseteq V$. This shows that f is almost strongly θ -bcontinuous. \Box

Theorem 2.12. [16] Let A and B be any subset of a space X. Then the following properties hold:

- (1) $A \in BR(X)$ if and only if A is b- θ -open and b- θ -closed;
- (2) $x \in bCl_{\theta}(A)$ if and only if $V \cap A \neq \phi$ for each $V \in BR(X, x)$;
- (3) $A \in BO(X)$ if and only if $bCl(A) \in BR(X)$;
- (4) $A \in BC(X)$ if and only if $bInt(A) \in BR(X)$;
- (5) $A \in BO(X)$ if and only if $bCl(A) = bCl_{\theta}(A)$;
- (6) A is b- θ -open in X if and only if for each $x \in A$ there exists $V \in BR(X)$ such that $x \in V \subseteq A$.

Lemma 2.13. A subset U of a space X is $b \cdot \theta$ -open in X if and only if for each $x \in U$, there exists b-open set W with $x \in W$ such that $bCl(W) \subseteq U$.

Theorem 2.14. For a function $f : X \to Y$, the following are equivalent:

- (1) f is almost strongly θ -b-continuous;
- (2) for each $x \in X$ and each regular open set V of Y containing f(x), there exists a b- θ -open set U containing x such that $f(U) \subseteq V$;
- (3) for each $x \in X$ and each regular open set V of Y containing f(x), there exists a b-open set W containing x such that $f(bCl_{\theta}(W)) \subseteq V$.

Proof. (1) \rightarrow (2): Let $x \in X$ and let V be any regular open subset of Y with $f(x) \in V$. Since f is almost strongly θ -b-continuous, $f^{-1}(V)$ is b- θ -open in X and $x \in f^{-1}(V)$. Let $U = f^{-1}(V)$. Then $f(U) \subseteq V$.

 $(2) \rightarrow (3)$: Let $x \in X$ and let V be any regular open subset of Y with $f(x) \in V$. By (2), there exists a b- θ -open set U containing x such that $f(U) \subseteq V$. From Lemma 2.13 there exists a b-open set W such that $x \in W \subseteq bCl(W) \subseteq U$. Since W is b-open, $bCl(W) = bCl_{\theta}(W)$, and then we have $f(bCl_{\theta}(W)) \subseteq V$. (3) \rightarrow (1): This follows from Lemma 2.12(5).

3. Some properties

Theorem 3.1. Let $f : X \to Y$ be a function and $g : X \to X \times Y$ be the graph function of f. Then, the following properties hold:

- If g is almost strongly θ-b-continuous, then f is almost strongly θ-bcontinuous and X is almost b-regular;
- (2) If f is almost strongly θ-b-continuous and X is b*-regular, then g is almost strongly θ-b-continuous.

Proof. (1) Suppose that g is almost strongly θ -b-continuous. First we show that f is almost strongly θ -b-continuous. Let $x \in X$ and V be a regular open set of Y containing f(x). Then $X \times V$ is a regular open set of $X \times Y$

containing g(x). Since g is almost strongly θ b-continuous there exists $U \in BO(X, x)$ such that $g(bCl(U)) \subseteq X \times V$. Therefore, we obtain $f(bCl(U)) \subseteq V$. Next we show that X is almost b-regular. Let U be any regular open set of X and $x \in U$. Since $g(x) \in U \times Y$ and $U \times Y$ is regular open in $X \times Y$, there exists $G \in BO(X, x)$ such that $g(bCl(G)) \subseteq U \times Y$. Therefore, we obtain $x \in G \subseteq bCl(G) \subseteq U$ and hence X is almost b-regular.

(2) Let $x \in X$ and W be any regular open set of $X \times Y$ containing g(x). there exist regular open sets $U_1 \subseteq X$ and $V \subseteq Y$ such that $g(x) = (x, f(x)) \in U_1 \times V \subseteq W$. Since f is almost strongly θ -b-continuous, there exists $U_2 \in BO(X, x)$ such that $f(bCl(U_2)) \subseteq V$. Since X is b^* -regular and $U_1 \cap U_2 \in BO(X, x)$, there exists $U \in BO(X, x)$ such that $x \in$ $U \subseteq bCl(U) \subseteq U_1 \cap U_2$ (by Lemma 2.10). Therefore, we obtain $g(bCl(U)) \subseteq U_1 \times$ $f(bCl(U_2)) \subseteq U_1 \times V \subseteq W$. This shows that g is almost strongly θ -b-continuous. \Box

Lemma 3.2. [13] If X_0 is α -open in X, then $BO(X_0) = BO(X) \cap X_0$.

Lemma 3.3. [16] If $A \subseteq X_0 \subseteq X$, and X_0 is α -open in X, then $bCl(A) \cap X_0 = bCl_{X_0}(A)$, where $bCl_{X_0}(A)$ denotes the b-closure of A in the subspace X_0 .

Theorem 3.4. If $f : X \to Y$ is almost strongly θ -b-continuous and X_0 is a α -open subset of X, then the restriction $f|X_0 : X_0 \to$ Y is almost strongly θ -b-continuous.

Proof. For any $x \in X_0$ and any regular open set V of Y containing f(x), there exists $U \in BO(X, x)$ such that $f(bCl(U)) \subseteq V$ since f is almost strongly θ -b-continuous. Put $U_0 = U \cap X_0$, then by Lemmas 3.2 and 3.3, $U_0 \in (BO X_0)$ and $b(Cl_X) U_0 \subseteq (bC) U_0$

Therefore, we obtain $(f|X_0)(bCl_{X_0}(U_0)) = f(bCl_{X_0}(U_0)) \subseteq f(bCl(U_0)) \subseteq f(bCl(U)) \subseteq V$. This shows that $f|X_0$ is almost strongly θ -b-continuous.

Definition 3.5. A space X is said to be T_2 (resp; b-Urysohn) [6] if for each pair of distinct points x and y in X, there exist $U \in BO(X, x)$ and $V \in BO(X, x)$ such that $U \cap V = \phi$ (resp; $bCl(U) \cap bCl(V) = \phi$).

Definition 3.6. A space X is said to be rT_0 [1] if for each pair of distinct points x and y in X, there exist regular open set containing one of the points but not the other.

Theorem 3.7. Let $f : X \to Y$ be injective and almost strongly θ -b-continuous.

- (1) If Y is rT_0 , then X is $b-T_2$;
- (2) If Y is Hausdorff, then X is b-Urysohn.

Proof. (1) Let x and y be any distinct points of X. Since f is injective, $f(x) \neq f(y)$ and there exists a regular open set V containing f(x) not containing f(y) or a regular open set W containing f(y) not containing f(x). If the first case holds, then there exists $U \in BO(X, x)$ such that $f(bCl(U)) \subseteq V$. Therefore, we obtain $f(y) \notin f(bCl(U))$ and hence $X - bCl(U) \in BO(X, y)$. If the second case holds, then we obtain a similar result. Therefore, X is $b-T_2$.

(2) As in (1), if x and y are distinct points of X, then $f(x) \neq f(y)$. Since Y is Hausdorff, there exists open sets V and W containing f(x) and f(y) respectively, such that $V \cap W = \phi$. Hence $Int(Cl(V)) \cap Int(Cl(W)) = \phi$. Since f is almost strongly θ -b-continuous, there exist $G \in BO(X, x)$ and $H \in BO(X, y)$ such that $f(bCl(G)) \subseteq Int(Cl(V))$ and $f(bCl(H)) \subseteq Int(Cl(W))$. It follows that $bCl(G) \cap bCl(H) = \phi$. This shows that X is b-Urysohn. **Lemma 3.8.** Let A be a subset of X and B be a subset of Y. Then

- (1) [13] If $A \in BO(X)$ and $B \in BO(Y)$, then $A \times B \in BO(X \times Y)$.
- (2) [16] $bCl(A \times B) \subset bCl(A) \times bCl(B)$.

Theorem 3.9. Let $f : X_1 \to Y$, $g : X_2 \to Y$ be two almost strongly θ -b-continuous and Yis Hausdorff, then $A = \{(x_1, x_2) : f(x_1) = g(x_2)\}$ is b- θ -closed in $X_1 \times X_2$.

Proof. Let $(x_1, x_2) \notin A$. Then $f(x_1) \neq g(x_2)$. Since Y is Hausdorff, there exist open sets V_1 and V_2 containing $f(x_1)$ and $g(x_2)$ respectively, such that $V_1 \cap V_2 = \phi$, hence $Int(Cl(V_1)) \cap Int(Cl(V_2)) = \phi$. Since f and g are almost strongly θ -b-continuous, there exists $U_1 \in BO(X, x_1)$ and $U_2 \in BO(X, x_2)$ such that $f(bCl(U_1)) \subseteq Int(Cl(V_1))$ and $g(bCl(U_2)) \subseteq Int(Cl(V_2))$. Since $(x_1, x_2) \in U_1 \times U_2 \in BO(X_1 \times X_2)$ and $bCl(U_1 \times U_2) \cap A \subseteq (bCl(U_1) \times bC(U_2)) \cap A = \phi$, we have that $(x_1, x_2) \notin bCl_{\theta}(A)$. Thus A is b- θ -closed in $X_1 \times X_2$.

In [13], Nasef introduced the notion of B^* space. If for each $x \in X$, BO(X, x) is closed under finite intersection, then the space X is called B^* -space.

Theorem 3.10. Let f, g be two almost strongly θ -b-continuous from a B^* -space Xinto a Hausdorff, space Y. Then the set $A = \{x \in X : f(x) = g(x)\}$ is b- θ -closed.

Proof. We will show that $X \setminus A$ is $b \cdot \theta$ -open. Let $x \notin A$, then $f(x) \neq g(x)$. Since Y is Hausdorff, there exist open sets V_1 and V_2 in Y such that $f(x) \in V_1$ and $g(x) \in V_2$ and $V_1 \cap$ $V_2 = \phi$, hence $Int(Cl(V_1)) \cap Int(Cl(V_2)) =$ ϕ . Since f and g are almost strongly θ -bcontinuous, there exist b-open sets U_1 and U_2 containing x such that $f(bCl(U_1)) \subseteq$ $Int(Cl(V_1))$ and $g(bCl(U_2)) \subseteq Int(Cl(V_2))$. Take $U = U_1 \cap U_2$. Clearly $U \in BO(X, x)$ because X is B^* -space and $x \in U \subseteq bCl(U) \subseteq$ $bCl(U_1 \cap U_2) \subseteq bCl(U_1) \cap bCl(U_2) \subseteq X \setminus A$ because $f(bCl(U_1)) \cap g(bCl(U_2)) = \phi$. Thus $X \setminus A$ is b- θ -open. \Box

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\}$ of $X \times Y$ is called the graph of f and is denoted by G(f).

Definition 3.11. The graph G(f) of a function $f: X \to Y$ is said to be *b*- θ -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in BO(X, x)$ and an open set V in Y containing y such that $(bCl(U) \times Cl(V)) \cap G(f) = \phi$.

Lemma 3.12. The graph G(f) of a function $f : X \to Y$ is b- θ -closed if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in BO(X, x)$ and an open set V in Y containing y such that $f(bCl(U)) \cap Cl(V) = \phi$.

Theorem 3.13. Let $f : X \to Y$ be almost strongly θ -b-continuous and Y is Hausdorff, then G(f) is b- θ -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $f(x) \neq y$ Since Y is Hausdorff, there exists open sets V and W in Y containing f(x) and y respectively, such that $Int(Cl(V)) \cap Cl(W) = \phi$. Since f is almost strongly θ -b-continuous, there exist $U \in BO(X, x)$ such that $f(bCl(G)) \subseteq Int(Cl(V))$. Therefore, $f(bCl(U)) \cap Cl(W) = \phi$. and then by Lemma 3.12 G(f) is b- θ -closed in $X \times Y$.

Recall that a subspace A of X is called a retract of if there is a continuous map $r: X \to A$ (called a retraction) such that for all $x \in X$ and all $a \in A$, $r(x) \in A$, and r(a) = a.

Theorem 3.14. Let A be a subset of X and $r: X \to A$ be almost strongly θ -b-continuous retraction. If X is Hausdorff, then A is b- θ -closed subset of X.

Proof. Suppose that A is not b- θ -closed. Then there exists a point x in X such that $x \in bCl_{\theta}(A)$ but $x \notin A$. It follows that $r(x) \neq x$ because r is retraction. Since X is Hausdorff, there exist open sets U and Vcontaining x and r(x) respectively, such that $U \cap V = \phi$, hence $sCl(U) \cap Int(Cl(V)) \subset$ $Cl(U) \cap Int(Cl(V)) = \phi$. By hypothesis, there exists $U_* \in BO(X, x)$ such that $r(bCl(U_*)) \subseteq Int(Cl(V))$. Since $U \cap U_* \in$ BO(X, x) and $x \in bCl_{\theta}(A)$, we have we have $bCl(U \cap U_*) \cap A \neq \phi$. Therefore, there exists a point $y \in bCl(U \cap U_*) \cap A$. So $y \in A$ and $r(y) = y \in bCl(U)$. Since bCl(U) = sCl(U), $sCl(U) \cap Int(Cl(V)) = \phi$ gives $r(y) \notin$ Int(Cl(V)). On the other hand, $y \in bCl(U_*)$ and this implies $r(bCl(U_*)) \not\subseteq Int(Cl(V))$. This is contradiction with the hypothesis that r is almost strongly θ -b-continuous retraction. Thus A is b-closed subset of X.

Theorem 3.15. Let X, X_1 and X_2 be topological spaces, If $h : X \to X_1 \times X_2$, $h(x) = (x_1, x_2)$ is almost strongly θ -b-continuous then $f_i : X \to X_i$, $f_i(x) = x_i$ is almost strongly θ -b-continuous for i = 1, 2.

Proof. We show only that $f_1: X \to X_1$ is almost strongly θ -b-continuous. Let V_1 be any regular open set in X_1 . Then $V_1 \times X_2$ is regular open in $X_1 \times X_2$ and hence $h^{-1}(V_1 \times X_2)$ is b- θ -open in X. Since $f_1^{-1}(V_1) = h^{-1}(V_1 \times X_2)$, f_1 is almost strongly θ -b-continuous.

A subset K of a space X is said to be bclosed relative to X [16] (resp; N-closed relative to X [15]) if for every cover $\{V_{\alpha} : \alpha \in \Lambda\}$ of K by b-open (regular open) sets of X, there exists a finite subset Λ_0 of Λ such that $K \subseteq \cup \{bCl(V_{\alpha}) : \alpha \in \Lambda_0\}$ (resp; $K \subseteq \cup \{V_{\alpha} : \alpha \in \Lambda_0\}$).

Theorem 3.16. If a function $f : X \to Y$ is almost strongly θ -b-continuous and K is b-closed relative to X, then f(K) is N-closed relative to Y.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a cover of f(K)by regular open sets of Y. For each point $x \in K$, there exists $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is almost strongly θ -b-continuous there exists $U_x \in BO(X, x)$ such that $f(bCl(U_x)) \subseteq V_{\alpha(x)}$. The family $\{U_x : x \in K\}$ is a cover of K by b-open sets of X and hence there exists a finite subset K_0 of K such that $K \subseteq \bigcup_{x \in K_0} bCl(U_x)$. Therefore, we obtain $f(K) \subseteq \bigcup_{x \in K_0} V_{\alpha(x)}$. This shows that f(K) is N-closed relative to Y. \Box

A topological space X is said to be quasi-Hclosed [17] if every cover of X by open sets has a finite subcover whose closures cover X.

Theorem 3.17. Let X be a submaximal extermally disconnected space. If a function $f : X \to Y$ has a b- θ -closed graph, then $f^{-1}(K)$ is θ -closed in X for each subset K which is quasi-H-closed relative to Y.

Proof. Let K be a quasi-H-closed set of Y and $x \notin f^{-1}(K)$. Then for each $y \in K$ we have $(x, y) \notin G(f)$ and by Lemma 3.12 there exists $U_y \in BO(X, x)$ and an open set V_y of Y containing y such that $f(bCl(U_y)) \cap Cl(V_y) =$ ϕ . The family $\{V_y : y \in K \text{ is an open cover}$ of K and there exists a finite subset K_0 of K such that $K \subseteq \bigcup_{y \in K_0} Cl(V_y)$. Since X is submaximal externally disconnected, each U_y is open in X and $bCl(U_y) = Cl(U)$. Set U = $\bigcap_{y \in K_0} U_y$, then U is an open set containing x and $f(Cl(U)) \cap Cl(K) \subseteq \bigcup_{y \in K_0} [f(Cl(U)) \cap$ $Cl(V_y) \subseteq \bigcup_{x \in K_0} [f(bCl(U_y)) \cap Cl(V_y)] = \phi.$ Therefore, we have $Cl(U) \cap f^{-1}(K) = \phi$ and hence $x \notin Cl_{\theta}(f^{-1}(K))$. This shows that $f^{-1}(K)$ is θ -closed in X.

Theorem 3.18. If a function $f : X \to Y$ has a b- θ -closed graph, then f(K) is θ -closed in Y for each subset K which is b-closed relative to X.

Proof. Let K be a b-closed relative to X and $y \in Y \setminus f(K)$. Then for each $x \in K$ we have $(x, y) \notin G(f)$ and by Lemma 3.12, there exist $U_x \in BO(X, x)$ and open set V_x of Y containing y such that $f(bCl(U_x)) \cap Cl(V_x) = \phi$. The family $\{U_x : x \in K\}$ is a cover of K by b-open sets of X. Since K is b-closed relative to X, there exists a finite subset K_0 of K such that $K \subseteq \cup \{bCl(U_x : x \in K_0)\}$. put $V = \cap \{V_x : x \in K_0\}$. then V is an open set containing y and $f(K) \cap \cap Cl(V) \subseteq [\bigcup_{x \in K_0} f(bCl(U_x))] \cap Cl(V) \subseteq \bigcup_{x \in K_0} [f(bCl(U_x)) \cap Cl(V_x)] = \phi$. Therefore, we have $y \in Cl_{\theta}(f(K))$ and hence f(K) is θ -closed in Y. \Box

References

- D.Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1)(1986), 24-32.
- [2] D.Andrijevic, On b-open sets, Mat. Vesnik., 48(1996), 59-64.
- [3] A. Al-Omari and M. S. M. Noorani, On generalized b-closed sets. Bulleten of the Malay. Math. Sci. So., **32** no.(1) (2009), 19-30.
- [4] A. Al-Omari and M. S. M. Noorani Decomposition of continuity via b-open set. Bol. Soc. Paran. Mat., 26 (1-2) (2008), 53-64.
- [5] A. Al-Omari and M. S. M. Noorani Some properties of contra-*b*-continuous and almost contra*b*-continuous functions, Eur. J. Pure and Appl. Math., 2 (2) (2009) 213-230.
- [6] M.Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi J. Math. 2(2007), 11-19.
- [7] J.Dontchev and M.Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math Hungar. 71(1-2)(1996),109-1120.
- [8] E.Ekici and M.Caldas, Slightly γ-continuous functions, Bol. Soc. Paran. Mat 22 (2)(2004), 63-74.

- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer Math. Monthly* 70 (1963), 36-41.
- P. E. Long and L.L. Herrington, Propoerties of almost continuous functions, Boll. Unione Mat. Ital. 10 (1974), 336-342.
- [11] A.S. Mashhour , M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt* 53 (1982), 47-53.
- [12] O. Njastad, On some classes of nearly open sets, *Pacific J. Math.* **15** (1965), 961-970.

- [13] A.A.Nasef, On b-locally closed sets and related topic, Chaos solitions & Fractals 12(2001),1909-1915.
- [14] T. Noiri, On δ -continuous functions, J. Korean Math. Soc. **16** (1980), 161-166.
- [15] M.K. Singal and A. Mathur, On nearly compact spaces, Boll. UMI 2 (4)(1969), 702-710.
- [16] J.H.Park, Strongly θ -b-continuous functions Acta Math Hungar. **110**(4)(2006), 347-359
- [17] J. Porter and J. Thomas, On *H*-closed and minimal Hausdorff spaces, Trans. Amer. Matm. Soc. 138(1969), 159-170.
- [18] N. V. Velićko, H-closed topologicl spaces, Amer. math. Soc. Transl., 78(2)(1968), 103-118.

* DEPARTMENT OF MATHEMATICS, RADA'A COLLEGE OF EDUCATION AND SCIENCE, ALBIDA, YEMEN, ** * UMM AL-QURA UNIVERSITY, AL-QUNFUDHAH UNIVERSITY COLLEGE, MATHEMATICS DEPARTMENT, AL-QUNFUDHAH, P.O. Box(1109), ZIP CODE, 21912,KSA

** Dept. of Maths. and Stats., Mutah Univ., Karak, P.O. Box 7, Zip code, 61710-JORDAN

E-mail address: * hakim_albdoie@yahoo.com, E-mail address: ** alitaani@yahoo.com,

IJSER